Marco-o1: Towards Open Reasoning Models for Open-Ended Solutions
Yu Zhao, Huifeng Yin, Bo Zeng, Hao Wang, Tianqi Shi, Chenyang Lyu, Longyue Wang, Weihua Luo, Kaifu Zhang
Currently OpenAI o1 has sparked a surge of interest in the study of large reasoning models (LRM). Building on this momentum, Marco-o1 not only focuses on disciplines with standard answers, such as mathematics, physics, and coding-which are well-suited for reinforcement learning (RL)-but also places greater emphasis on open-ended resolutions. We aim to address the question: "Can the o1 model effectively generalize to broader domains where clear standards are absent and rewards are challenging to quantify?" Marco-o1 is powered by Chain-of-Thought (CoT) fine-tuning, Monte Carlo Tree Search (MCTS), reflection mechanisms, and innovative reasoning strategies-optimized for complex real-world problem-solving tasks. Figure 1 | A classic 'strawberry' question reasoned by our Marco-o1 model: "How many 'r's are in 'strawberry'."